

Bachelor- und Masterstudiengänge Lehramt Physik

Modulkatalog

Fakultät für Mathematik und Physik der Universität Hannover

Stand: 22.9.2015

Inhalt

Mechanik und Relativität	5
Elektrizität	6
Experimentalphysik	7
Physik Präsentieren	9
Mathematische Methoden der Physik/ Theoretische Elektrodynamik	10
Mathematische Methoden der Physik für das Lehramt an Berufsschulen	12
Optik, Atomphysik, Quantenphänomene für das Lehramt an Berufsschulen	13
Theoretische Physik	14
Einführung in die Festkörperphysik	15
Atom- und Molekülphysik	16
Kohärente Optik	17
Strahlenschutz	18
Einführung in die Festkörperphysik für das Lehramt an Berufsschulen	19
Atom- und Molekülphysik für das Lehramt an Berufsschulen	20
Kohärente Optik für das Lehramt an Berufsschulen	21
Strahlenschutz für das Lehramt an Berufsschulen	22
Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen	23
Lehren und Lernen im Physikunterricht I+II	24
Ersatzmodul I	26
Ersatzmodul II	27
Ersatzmodul III	28
Bachelorarbeit (FüB)	29
Bachelorarbeit (Bachelor Technical Education)	30
Fachwissenschaftliche Vertiefung	31
Fortgeschrittene Fachdidaktik Physik	32
Fachpraktikum Physik (Lehramt Gymnasium)	34
Fachpraktikum Physik (LbS)	36
Masterarbeit (LGym)	38
Masterarbeit (LbS)	39

Module Physik

Nr.	Modulname	Erstfach Fächerübergreifender Bachelor	Zweitfach Fächerübergreifender Bachelor	Bachelor Technical Education	Erstfach Master Lehramt Gymnasium	Zweitfach Master Lehramt Gymnasium	Zertifikats- Master fach Lehramt Gymnasium	Master Lehramt berufsbildende Schulen	Seite
1001	Mechanik und Relativität	Р	Р	Р			Р		5
1002	Elektrizität	Р	Р	Р			Р		6
1003	Experimentalphysik	Р	Р				Р		7
1004	Physik präsentieren	Р		Р		Р			9
1005	Mathematische Methoden der Physik/ Theoretische Elektrodynamik	P	P				Р		10
1006	Mathematische Methoden für LBS			Р					12
1014	Optik, Atomphysik, Quantenphänomene für LBS			Р					13
1111	Theoretische Physik	Р				Р	Р		14
1201	Einführung in die Festkörperphysik	WP				WP	WP	WP	15
1301	Atom- und Molekülphysik	WP				WP	WP	WP	16
1302	Kohärente Optik	WP				WP	WP	WP	17
1501	Strahlenschutz	WP				WP	WP	WP	18
1850	Einführung in die Festkörperphysik für LBS							WP	19
1851	Atom- und Molekülphysik für LBS							WP	20
1852	Kohärente Optik für LBS							WP	21
1853	Strahlenschutz für LBS							WP	22
1853	Moleküle, Kerne, Teilchen, Festkörper für LBS							Р	23

1750	Lehren und Lernen im Physikunterricht I + II	WP	WP	Р			Р		24
1011	Ersatzmodul I	WP							26
1012	Ersatzmodul II	WP							27
1013	Ersatzmodul III	WP							28
1911	Bachelorarbeit (FüB)	В							29
1921	Bachelorarbeit (Tech. Ed.)			В					30
1016	Fachwissenschaftliche Vertiefung				Р		Р		31
1717	Fortgeschrittene Fachdidaktik Physik				Р	Р	Р	Р	34
1718	Fachpraktikum (LA Gym)				Р	Р			34
1728	Fachpraktikum (LbS)							Р	36
1912	Masterarbeit (LA Gym)				М	М			38
1922	Masterarbeit (LbS)							М	39

P - Pflichtmodul, WP - Wahlpflichtmodul, B - Bachelorarbeitmodul, M - Masterarbeitmodul

Modulname, Nr.	Mechanik und Relativität	1001	
Semesterlage	Wintersemester		
Modulverantwortliche/r	Institute der Experimentalphysik		
Dozentinnen/Dozenten	Dozenten der Experimentalphysik		
Lehrveranstaltungen (SWS)	orlesung Mechanik und Relativität bung zu Mechanik und Relativität		
Präsenzstudium (h)	0		
Selbststudium (h)	0		
Leistungspunkte (ECTS)			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben Prüfungsleistung: Klausur		
Notenzusammensetzung	Die Klausurnote geht nicht in die Bachelornote ein		

Die Studierenden haben eine anschauliche Vorstellung physikalischer Phänomene der Mechanik und Relativität gewonnen. Sie kennen die einschlägigen Gesetzmäßigkeiten und können diese mit Schlüsselexperimenten begründen. Die Studierenden sind mit der Bearbeitung von Beispielaufgaben der Mechanik und Relativität vertraut und können Aufgaben mit angemessenem Schwierigkeitsgrad eigenständig lösen.

Inhalte:

- Mechanik eines Massepunktes, Systeme von Massepunkten und Stöße
- Dynamik starrer ausgedehnter Körper
- Reale und flüssige Körper, Strömende Flüssigkeiten und Gase
- Temperatur, Ideales Gas, Wärmetransport
- Mechanische Schwingungen und Wellen

Grundlegende Literatur:

- Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer Verlag
- Gerthsen, Physik, Springer Verlag
- Tipler, Physik, Spektrum Akademischer Verlag
- Feynman, Lectures on Physics, Band 1; Addison-Wesley Verlag

Empfohlene Vorkenntnisse:

Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Fächerübergreifender Bachelor
- Bachelor Technical Education
- Bachelorstudiengang Physik
- Bachelorstudiengang Meteorologie
- Zertifikatsstudiengang Drittes Fach f
 ür das Lehramt an Gymnasien

Modulname, Nr.	Elektrizität 1002			
Semesterlage	Sommersemester	ommersemester		
Modulverantwortliche/r	Institute der Experimentalphysik			
Dozentinnen/Dozenten	Dozenten der Experimentalphysik			
Lehrveranstaltungen (SWS)	Vorlesung ElektrizitätÜbung zu ElektrizitätGrundpraktikum I			
Präsenzstudium (h)	150			
Selbststudium (h)	210			
Leistungspunkte (ECTS)	12			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben und Laborübungen Prüfungsleistung: Klausur			
Notenzusammensetzung	Note der Klausur			

Die Studierenden verfügen über fundiertes Faktenwissen auf dem Gebiet der Elektrizitätslehre. Sie sind in der Lage die einschlägigen Gesetzmäßigkeiten herzuleiten und können diese mit Schlüsselexperimenten begründen. Die Studierenden können Aufgaben mit angemessenem Schwierigkeitsgrad eigenständig lösen.

Die Studierenden sind mit den Grundprinzipien des Experimentierens vertraut. Sie kennen die Funktion und Genauigkeit verschiedener Messgeräte und sind mit computergestützter Datenerfassung vertraut. Sie sind in der Lage Messergebnisse in tabellarischer und graphischer Form übersichtlich darzustellen.

Inhalte: Vorlesung und Übung:	Grundpraktikum I: Mechanik und Elektrizität
	Praktikumsexperimente: Auswahl aus: Schwingungen, Gekoppelte Pendel, Kreisel, Ultraschall, Akustik, Maxwellrad, Temperatur, Viskosität, Spezifische Wärme, Wasserdämpfe, Widerstand, Schwingkreise, Transistor, Operationsverstärker, Kippschaltung, Rückkopplung, Membranmodell, Galvanometer, Leuchtstofflampe, Oszilloskop, Magnetfeld, Brennstoffzelle

Grundlegende Literatur:

- Demtröder, Experimentalphysik 2, Elektrizität und Optik, Springer Verlag
- Gerthsen, Physik, Springer Verlag
- Tipler, Physik, Spektrum Akademischer Verlag
- Feynman, Lectures on Physics, Band 2; Addison-Wesley Verlag

Empfohlene Vorkenntnisse:

Vorlesungen Mechanik und Relativität und Mathematische Methoden der Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Fächerübergreifender Bachelor
- Bachelor Technical Education
- Bachelorstudiengang Physik
- Bachelorstudiengang Meteorologie

Modulname, Nr.	Experimentalphysik 1003		
Semesterlage	Wintersemester und Sommersemester, jährlich		
Modulverantwortliche/r	Studiendekanin/Studiendekan		
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Experimentalphysik		
Lehrveranstaltungen (SWS)	 Vorlesung "Optik, Atomphysik, Quantenphänomene" (4 SWS) Übung zu "Optik, Atomphysik, Quantenphänomene" (2 SWS) Vorlesung "Moleküle, Kerne, Teilchen, Festkörper" (4 SWS) Übung zu "Moleküle, Kerne, Teilchen, Festkörper" (2 SWS) Praktikum "Grundpraktikum II" (2 SWS) Praktikum "Grundpraktikum LLI" (2 SWS) 		
Präsenzstudium (h)	240		
Selbststudium (h)	300		
Leistungspunkte (ECTS)	18		
Leistungsnachweis zum Erwerb der LP	 Studienleistung: beide Übungen, Laborübungen zu beiden Praktika Prüfungsleistung: mündliche Prüfung 		
Notenzusammensetzung	Note der mündlichen Prüfung		

Kenntnis der fundamentalen experimentellen Befunde der Optik, Atomphysik und der Struktur der Materie von Elementarteilchen bis zur Festkörperphysik. Grundlegendes Verständnis physikalischer Sachverhalte der Atom- und Molekülphysik; Kern- und Teilchenphysik sowie der Statistischen Physik und die Fähigkeit diese eigenständig theoretisch wie praktisch anzuwenden. Experimentelle Methoden können eigenständig angewendet und eine quantitative Auswertung mit kritischer Einschätzung der Messergebnisse vorgenommen werden.

Inhalte:

- Welleneigenschaften des Lichts: Interferenz, Beugung, Polarisation, Doppelbrechung
- Geometrische Optik, optische Instrumente
- Materiewellen, Welle-Teilchen-Dualismus
- Aufbau von Atomen, Energiezustände, Drehimpuls, magnetisches Moment
- Mehrelektronensysteme, Pauli-Prinzip
- Spektroskopie, spontane und stimulierte Emission
- Moleküle: Chemische Bindung, Molekülspektroskopie
- Aufbau der Materie
- Physik der Kerne, Elementarteilchen
- Kernstabilität, Radioaktiver Zerfall
- Kernphysikalische Messmethoden
- Grundlagen der Statistischen Physik, Hauptsätze der Thermodynamik
- Kristalle, Halbleiter, Leitungsphänomene
- Praktikumsexperimente (z.B. Linsen, Interferometer, Beugung, Mikroskop, Prisma, Gitter, Fotoeffekt, Spektralapparat, Polarisation, Pyrometer, Temperaturstrahlung, Stirlingmotor, Kritischer Punkt)

Grundlegende Literatur:

- Demtröder "Experimentalphysik 2 und 3", Springer Verlag
- Berkeley Physikkurs
- Bergmann/Schäfer
- Haken, Wolf, "Atom- und Quantenphysik" sowie "Molekülphysik und Quantenchemie"

Empfohlene Vorkenntnisse: Module "Mechanik und Relativität"; "Elektrizität"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Fächerübergreifender Bachelor Bachelorstudiengang Physik Zertifikatsstudiengang Drittes Fach für das Lehramt an Gymnasien

Modulname, Nr.	Physik Präsentieren	1611
Semesterlage	Wintersemester oder Sommersemester	
Modulverantwortliche/r	Studiendekanin/Studiendekan	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Physik	
Lehrveranstaltungen (SWS)	Proseminar (2 SWS)	
Präsenzstudium (h)	30	
Selbststudium (h)	90	
Leistungspunkte (ECTS)	4	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Seminarleistung	
Notenzusammensetzung		

Die Studierenden können ein physikalisches Thema anhand von ausgewählten Literaturquellen aufbereiten, dieses in einem Vortrag anderen Studierenden vorstellen und anschließend darüber diskutieren. Neben der fachlich richtigen Darstellung der vorgegebenen Inhalte spielt hierbei die adäquate Aufbereitung des Themas für eine Präsentation die Hauptrolle. Die Studierenden lernen die notwendigen Präsentationstechniken und Visualisierungstechniken kennen und wenden diese eigenständig an.

Inhalte:

- Physikalische Themen (Auswahl aus einem vom Dozenten vorgegeben Themenfeld)
- Vorbereitung einer Präsentation
- Erfolgsfaktoren einer verständlichen Präsentation
- Visualisierungsmedien wirksam einsetzen
- Umgang mit Lampenfieber
- Wissenschaftliche Diskussion

Grundlegende Literatur:

Wird zum jeweiligen Thema benannt

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Fächerübergreifender Bachelor (Erstfach)
- Master of Education (Zweitfach)
- Bachelorstudiengang Technical Education

Modulname, Nr.	Mathematische Methoden der Physik/ Theoretische Elektrodynamik		
Semesterlage	Wintersemester und Sommersemester		
Modulverantwortliche/r	Institut für Theoretische Physik		
Dozentinnen/Dozenten	Dozentinnen/Dozenten der theoretischen Physik		
Lehrveranstaltungen (SWS)	 Vorlesung Mathematische Methoden der Physik Übung zu Mathematische Methoden der Physik Vorlesung Theoretische Elektrodynamik Übung zu Theoretische Elektrodynamik 		
Präsenzstudium (h)	150		
Selbststudium (h)	270		
Leistungspunkte (ECTS)	14		
Leistungsnachweis zum Erwerb der LP	Studienleistung: jeweils die Übung zu Mathematische Methoden der Physik und zu Theoretische Elektrodynamik Prüfungsleistung: eine der Klausuren zu Mathematische Methoden der Physik oder zu Theoretische Elektrodynamik		
Notenzusammensetzung	geht nicht in die Bachelornote ein		

Die Studierenden kennen die mathematischen Größen zur Beschreibung physikalischer Theorien. Sie sind in der Lage einfache physikalische Problemstellungen mathematisch zu formulieren und mit analytischen Verfahren sowie numerischen, computergestützten Verfahren zu lösen.

Die Studierenden haben die logische Struktur der Elektrodynamik verstanden und kennen die mathematische Formulierung der Gesetzmäßigkeiten. Sie kennen prominente Phänomene der Elektrodynamik und können diese aus den Grundgleichungen herleiten. Die Studierenden sind in der Lage analytische Lösungswege für Probleme der Elektrodynamik zu finden sowie geeignete mathematische und physikalische Näherungen bei der Lösung ausgewählter Problemstellungen zu machen.

Mathematische Methoden der Physik:

- beschleunigte Koordinatensysteme: Scheinkräfte, Kinematik des starren Körpers
- Vektoren: Skalar- und Kreuzprodukt, Index-Schreibweise, Determinanten
- Raumkurven: Differenzieren, Kettenregel, Gradient, Frenet-Formeln
- gewöhnliche Differentialgleichungen: Lösungsverfahren
- Newtonsche Mechanik eines Massenpunkts, Systeme von Massenpunkten
- Tensoren: Matrizen, Drehungen, Hauptachsentransformation, Trägheitstensor
- harmonische Schwingungen: Normalkoordinaten, Resonanz
- Funktionen: Umkehrfunktion, Potenzreihen, Taylorreihe, komplexe Zahlen
- Integration: ein- und mehrdimensional, Kurven- und Oberflächenintegrale
- eindimensionale Bewegung: Lösung mit Energiesatzkrummlinige Koordinaten: Integrationsmaß, Substitution, Delta-Distribution
- Programmierung einfacher numerischer Verfahren zur Lösung und Visualisierung physikalischer Probleme

Theoretische Elektrodynamik:

- Vektorfelder: Vektoranalysis, Integralsätze, Laplace-Operator
- Maxwell-Gleichungen: integrale Form, Anfangs- und Randwerte, Grenzflächen
- Potentiale, Eichfreiheit, Vakuum-Lösung, Lösung mit Quellen, Retardierung
- lineare partielle Differentialgleichungen: Separation, Greensche Funktion
- Fourier-Analysis: Funktionenräume, Fourier-Reihen, Fourier-Transformation
- Elektrostatik: Randwertprobleme, Potentialtheorie, Multipol-Entwicklung
- Magnetostatik: fadenförmige Stromverteilungen, Feldenergie
- bewegte Punktladungen, Lienard-Wiechert-Potentiale,
- elektromagnetische Wellen: im Vakuum, Einfluss der Quellen, Abstrahlung

Grundlegende Literatur:

- Feynman, Lectures on Physics, Band 1+2, Addison-Wesley Verlag
- Großmann, Mathematischer Einführungskurs für die Physik, Teubner 2000
- Landau-Lifschitz, Lehrbuch der Theoretischen Physik, Band II, Harri
- J.D. Jackson, Klassische Elektrodynamik, Gruyter, Walter de GmbH
- Römer & Forger, Elementare Feldtheorie, Wiley

Empfohlene Vorkenntnisse:

• Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)

- Fächerübergreifender Bachelor
- Zertifikatsstudiengang Drittes Fach für das Lehramt an Gymnasien

Modulname, Nr.	Mathematische Methoden der Physik für das Lehramt an Berufsschulen		
Semesterlage	Wintersemester		
Modulverantwortliche/r	Institut für Theoretische Physik		
Dozentinnen/Dozenten	Dozentinnen/Dozenten der theoretischen Physik		
Lehrveranstaltungen (SWS)	 Vorlesung Mathematische Methoden der Physik Übung zu Mathematische Methoden der Physik 		
Präsenzstudium (h)	75		
Selbststudium (h)	135		
Leistungspunkte (ECTS)	7		
Leistungsnachweis	Studienleistung: Übung zu Mathematische Methoden der Physik		
zum Erwerb der LP	Prüfungsleistung: Klausur		
Notenzusammensetzung	geht nicht in die Bachelornote ein		

Die Studierenden kennen die mathematischen Größen zur Beschreibung physikalischer Theorien. Sie sind in der Lage einfache physikalische Problemstellungen mathematisch zu formulieren und mit analytischen Verfahren sowie numerischen, computergestützten Verfahren zu lösen.

Inhalte:

- beschleunigte Koordinatensysteme: Scheinkräfte, Kinematik des starren Körpers
- Vektoren: Skalar- und Kreuzprodukt, Index-Schreibweise, Determinanten
- Raumkurven: Differenzieren, Kettenregel, Gradient, Frenet-Formeln
- gewöhnliche Differentialgleichungen: Lösungsverfahren
- Newtonsche Mechanik eines Massenpunkts, Systeme von Massenpunkten
- Tensoren: Matrizen, Drehungen, Hauptachsentransformation, Trägheitstensor
- harmonische Schwingungen: Normalkoordinaten, Resonanz
- Funktionen: Umkehrfunktion, Potenzreihen, Taylorreihe, komplexe Zahlen
- Integration: ein- und mehrdimensional, Kurven- und Oberflächenintegrale
- eindimensionale Bewegung: Lösung mit Energiesatz
- krummlinige Koordinaten: Integrationsmaß, Substitution, Delta-Distribution
- Programmierung einfacher numerischer Verfahren zur Lösung und Visualisierung physikalischer Probleme

Grundlegende Literatur:

- Feynman, Lectures on Physics, Band 1+2, Addison-Wesley Verlag
- Großmann, Mathematischer Einführungskurs für die Physik, Teubner 2000

Empfohlene Vorkenntnisse: Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit: Bachelorstudiengang Technical Education

Modulname, Nr.	Optik, Atomphysik, Quantenphänomene für das Lehramt an Berufsschulen		
Semesterlage	Vintersemester, jährlich		
Modulverantwortliche/r	Studiendekanin/Studiendekan		
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Experimentalphysik		
Lehrveranstaltungen (SWS)	 Vorlesung "Optik, Atomphysik, Quantenphänomene" (4 SWS) Übung zu "Optik, Atomphysik, Quantenphänomene" (2 SWS) Praktikum "Grundpraktikum II" (2 SWS) 		
Präsenzstudium (h)	120		
Selbststudium (h)	240		
Leistungspunkte (ECTS)	12		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übung, Laborübung Prüfungsleistung: mündliche Prüfung		
Notenzusammensetzung	Note der mündlichen Prüfung		

Die Studierenden kennen die fundamentalen experimentellen Befunde und verstehen die zugrunde liegenden physikalischen Gesetzmäßigkeiten der Optik und Atomphysik. Die Studierenden sind in der Lage diese Gesetzmäßigkeiten eigenständig auf physikalische Problemstellungen anzuwenden. Die Studierenden kennen die Funktion und Genauigkeit verschiedener Messgeräte und sind mit der Anpassung von Funktionen an Messdaten vertraut. Sie können angemessene Fehlerabschätzungen ausführen und beherrschen die Fehlerfortpflanzung.

Inhalte: Optik, Atomphysik, Quantenphänomene	Grundpraktikum II: Optik und Atomphysik
 Geometrische Optik Welleneigenschaften des Lichts: Interferenz, Beugung, Polarisation, Doppelbrechung Optik, optische Instrumente Materiewellen, Welle-Teilchen-Dualismus Aufbau von Atomen Energiezustände, Drehimpuls, magnetisches Moment Mehrelektronensysteme, Pauli-Prinzip Spektroskopie, spontane und stimulierte Emission 	mögliche Praktikumsexperimente: Linsen, Interferometer, Beugung, Mikroskop, Prisma, Gitter, Fotoeffekt, Spektralapparat, Polarisation

Grundlegende Literatur:

- Demtröder, Experimentalphysik 2 und 3, Springer Verlag
- Berkeley Physikkurs
- Bergmann/Schäfer
- Haken, Wolf, Atom- und Quantenphysik, Springer Verlag

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Bachelorstudiengang Technical Education

Modulname, Nr.	Theoretische Physik	1131
Semesterlage	Wintersemester, jährlich	
Modulverantwortliche/r	Institut für Theoretische Physik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten des Instituts für Theoretische Physik	
Lehrveranstaltungen (SWS)	 Vorlesung "Theoretische Physik für Lehramt" (4 SWS) Übung zu "Theoretische Physik für Lehramt" (2 SWS) 	
Präsenzstudium (h)	90	
Selbststudium (h)	210	
Leistungspunkte (ECTS)	10	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übung und KlausurPrüfungsleistung: mündliche Prüfung	
Notenzusammensetzung	Note der Prüfung	

Die Studierenden erlangen die Fähigkeit, grundlegende physikalische Phänomene mit angemessenen mathematischen und theoretischen Methoden der speziellen Relativitätstheorie, der Quantentheorie bzw. der statistischen Physik zu beschreiben. Sie haben die notwendigen Kenntnisse für eine eigenständige Erarbeitung von weiterführendem Lehrbuchstoff. Sie sind in der Lage das theoretische Wissen in der Übung auf physikalische Probleme anzuwenden.

Inhalte:

- Spezielle Relativitätstheorie (Lorentz-Transformation, relativistische Effekte)
- Quantenmechanik (Experimentelle Befunde, Schrödingergleichung, einfache Potentialprobleme, harmonischer Oszillator, Wasserstoff-Atom, identische Teilchen, Verschränkung)
- Statistische Physik (Statistische Beschreibung des Gleichgewichts, Temperatur, Entropie)

Grundlegende Literatur:

- F. Haake, "Einführung in die theoretische Physik"
- H. Goldstein, C. Poole und J. Safko, "Klassische Mechanik"
- L. N. Hand und J. D. Finch, "Analytical Mechanics"
- W. Nolting, "Spezielle Relativitätstheorie, Thermodynamik"
- W. Nolting, "Quantenmechanik Grundlagen"
- L. I. Schiff, "Quantum Mechanics"
- F. Schwabl, "Quantenmechanik (QM I)"
- Galindo und P. Pascual, "Quantum Mechanics 1"
- Messiah, "Quantum Mechanics 1"
- L. D. Landau und E. M. Lifshitz, "Quantum Mechanics"
- · Cohen-Tannoudji, B. Diu und F. Laloe, "Quantum Mechanics"
- J. P. Sethna, "Entropy, Order Parameters, and Complexity"
- R. P. Feynman, "Lectures on Physics"

Empfohlene Vorkenntnisse:

"Mathematische Methoden der Physik/Theoretische Elektrodynamik", "Mechanik und Relativität", "Elektrizität"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Fächerübergreifender Bachelorstudiengang (Erstfach)
- Masterstudiengang Lehramt Gymnasium (Zweitfach)

• Zertifikatsstudiengang Drittes Fach für das Lehramt an Gymnasien

Modulname, Nr.	Einführung in die Festkörperphysik	1211
Semesterlage	Wintersemester, jährlich	
Modulverantwortliche/r	Institut für Festkörperphysik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Festkörperphysik	
Lehrveranstaltungen (SWS)	 Vorlesung "Einführung in die Festkörperphysik" (3 SWS) Übung zu "Einführung in die Festkörperphysik" (1 SWS) Praktikum "Laborpraktikum Einführung in die Festkörperphysik" (3 SWS) 	
Präsenzstudium (h)	105	
Selbststudium (h)	135	
Leistungspunkte (ECTS)	8	
Leistungsnachweis	Studienleistung: Übung, Laborübung	
zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung	Note der Prüfungsleistung	

Kompetenzziele:

Die Studierenden verstehen die grundlegenden Konzepte der Festkörperphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Kristalle und Kristallstrukturen, reziprokes Gitter
- Kristallbindung, Gitterschwingungen, thermische Eigenschaften, Quantisierung, Zustandsdichte
- Fermigas, Energiebänder, Halbleiter, Metalle, Fermiflächen
- Anregungen in Festkörpern
- experimentelle Methoden: Röntgenbeugung, Rastersonden- und Elektronenmikroskopie, Leitfähigkeit, Magnetowiderstand, Halleffekt, Quantenhalleffekt
- Praktische Durchführung von Experimenten

Grundlegende Literatur:

- Ashcroft and Mermin, "Solid State Physics"
- C. Kittel, "Einführung in die Festkörperphysik"
- K. Kopitzki, "Einführung in die Festkörperphysik"
- H. Ibach, H. Lüth, "Festkörperphysik"

Empfohlene Vorkenntnisse:

- Module "Mechanik und Relativität" und "Elektrizität"
- Modul "Experimentalphysik"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Fächerübergreifender Bachelorstudiengang
- Masterstudiengang Lehramt Gymnasium
- Bachelorstudiengang Physik

Modulname, Nr.	Atom- und Molekülphysik	1311	
Semesterlage	Wintersemester, jährlich		
Modulverantwortliche/r	Institut für Quantenoptik	Institut für Quantenoptik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Quantenoptik		
Lehrveranstaltungen (SWS)	Vorlesung "Atom- und Molekülphysik" (3 SWS) Übung "Atom- und Molekülphysik" (1 SWS) Praktikum "Laborpraktikum Atom- und Molekülphysik" (3 SWS)		
Präsenzstudium (h)	105		
Selbststudium (h)	135		
Leistungspunkte (ECTS)	8		
Leistungsnachweis	Studienleistung: Übung, Laborübung		
zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung oder Klausur		
Notenzusammensetzung	Note der Prüfungsleistung		

Die Studierenden verstehen die grundlegenden Konzepte der Atom- und Molekülphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Zusammenfassung H-Atom
- Atome in statischen elektrischen und magnetischen Feldern
- Fein-/Hyperfeinstrukturen atomarer Zustände
- Wechselwirkung mit dem EM Strahlungsfeld
- Mehrelektronensysteme
- Atomspektren/Spektroskopie
- Vibration und Rotation von Molekülen
- Elektronische Struktur von Molekülen
- Dissoziation und Ionisation von Molekülen
- Ausgewählte Experimente der modernen Atom- und Molekülphysik
- Praktische Durchführung von Experimenten

Grundlegende Literatur:

- T. Mayer-Kuckuck, "Atomphysik" Teubner, 1994
- B. Bransden, C. Joachain, "Physics of Atoms and Molecules" Longman 1983
- H. Haken, H. Wolf, "Atom- und Quantenphysik sowie Molekülphysik und Quantenchemie"
- R. Loudon, "The Quantum Theory of Light" OUP, 1973
- W. Demtröder, "Molekülphysik" Oldenbourg, 2003 ISBN: 3486249746

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"
- Modul "Experimentalphysik" oder "Experimentalphysik für LbS"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Fächerübergreifender Bachelorstudiengang
- Masterstudiengang Lehramt Gymnasium
- Bachelorstudiengang Physik

Modulname, Nr.	Kohärente Optik	1312
Semesterlage	Sommersemester, jährlich	
Modulverantwortliche/r	Institut für Quantenoptik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Quantenoptik und Gravitationsphys	sik
Lehrveranstaltungen (SWS)	 Vorlesung "Kohärente Optik" (3 SWS) Übung zu "Kohärente Optik" (1 SWS) Praktikum "Laborpraktikum Kohärente Optik" (3 SWS) 	
Präsenzstudium (h)	105	
Selbststudium (h)	135	
Leistungspunkte (ECTS)	8	
Leistungsnachweis	Studienleistung: Übung, Laborübung	
zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung	Note der Prüfungsleistung	

Die Studierenden verstehen die grundlegenden Konzepte der Kohärenten Optik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Maxwellgleichungen und EM Wellen
- Wellenoptik, Matrixoptik (ABCD, Jones, Müller, Streu, Transfer...)
- Beugungstheorie, Fourieroptik, Resonatoren, Moden
- Licht-Materie-Wechselwirkung (klassisch / halbklassisch, Bloch-Modell)
- Ratengleichungen, Laserdynamik
- Lasertypen, Laserkomponenten, Laseranwendungen
- Modengekoppelte Laser
- Einmodenlaser, Laserrauschen/-stabilisierung
- Laserinterferometrie, Modulationsfelder und Homodyndetektion
- Praktische Durchführung von Experimenten

Grundlegende Literatur:

- Meschede, "Optik, Licht und Laser", Teubner Verlag
- Menzel, "Photonik"
- Born/Wolf, "Priciples of Optics"
- Kneubühl/Sigrist, "Laser", Teubner
- Reider, "Photonik", Springer
- Yariv, Hecht, Siegmann
- Originalliteratur

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"
- Modul "Experimentalphysik"
- Modul "Atom- und Molekülphysik"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Fächerübergreifender Bachelorstudiengang
- Masterstudiengang Lehramt Gymnasium
- Bachelorstudiengang Physik

Modulname, Nr.	Strahlenschutz	1501
Semesterlage	Wintersemester und Sommersemester, jährlich	
Modulverantwortliche/r	Institut für Strahlenschutz und Radioökologie	
Dozentinnen/Dozenten	Dozentinnen/Dozenten des Strahlenschutzes und der Radioökologie	
Lehrveranstaltungen (SWS)	Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie" (2 SWS)	
	Praktikum "Laborpraktikum Strahlenschutz" (6 SWS)	
Präsenzstudium (h)	120	
Selbststudium (h)	120	
Leistungspunkte (ECTS)	8	
Leistungsnachweis	Studienleistung: Laborübung	
zum Erwerb der LP	Prüfungsleistung: Klausur oder mündliche Prüfung	
Notenzusammensetzung	Note der Prüfungsleistung	

Vertieftes Verständnis der kernphysikalischen und kernchemischen Grundlagen des Strahlenschutzes. Kenntnisse ausgewählter experimenteller Methoden zur Analyse strahlenschutzrelevanter Systeme. Kompetenter Umgang mit fortgeschrittenen Experimentellen Methoden. Kritische Beurteilung und Diskussion des experimentellen Aufbaus und der erzielten Messergebnisse. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Eigenschaften der Atomkerne, Kernmodelle
- Phänomenologie des radioaktiven Zerfalls
- Alpha-, Beta- und Gamma- Zerfall
- Kernreaktionen, spontane und induzierte Spaltung
- Neutronenphysik, Grundlagen der Reaktorphysik
- Erweiterung des periodischen Systems der Elemente und Erzeugung überschwerer Kerne
- Dosimetrie von Strahlenexpositionen
- Wechselwirkung von Strahlung mit Materie und Strahlenmessverfahren
- Praktische Durchführung von Experimenten

Grundlegende Literatur:

- DVD mit Unterlagen aller Lehrveranstaltungen, auch verfügbar unter www.zsr.uni-hannover.de
- H.-G. Vogt, H. Schultz: Grundzüge des praktischen Strahlenschutzes, 3. Aufl., Hanser Verlag München 2004,
- G. Choppin, J. Rydberg, J.O. Liljenzin, Radiochemistry and Nuclear Chemistry, Butterworth Heinemann, Oxford, 1995
- P. Marmier, E. Sheldon, Physics of Nuclei and Particles, 2 Vol., Academic Press, New York, 1970
- T. Mayer-Kuckuk, Kernphysik (6. Aufl.) Teubner, Stuttgart, 1994
- G.F. Knoll, Radiation detection and measurement, J. Wiley & Sons, New York, 2000
- Karlsruher Nuklidkarte
- Strahlenschutzverordnung (StrlSchV)

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"
- Modul "Experimentalphysik"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Fächerübergreifender Bachelorstudiengang (Erstfach)
- Masterstudiengang Lehramt Gymnasium

Masterstudiengang Physik (Schwerpunktsmodul)

Modulverantwortliche/r Ins	inführung in die Festkörperphysik für das Lehramt an Berufsschulen	1850
Dozentinnen/Dozenten Dozenten Lehrveranstaltungen	Wintersemester, jährlich	
Lehrveranstaltungen	Institut für Festkörperphysik	
	Dozentinnen/Dozenten der Festkörperphysik	
	Vorlesung "Einführung in die Festkörperphysik" (3 SWS)Übung zu "Einführung in die Festkörperphysik" (1 SWS)	
Präsenzstudium (h) 12	0	
Selbststudium (h) 30		
Leistungspunkte (ECTS) 5		
	udienleistung: Übung üfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung No	ote der Prüfungsleistung	

Kompetenzziele:

Die Studierenden verstehen die grundlegenden Konzepte der Festkörperphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen experimentelle Methoden des Gebietes...

Inhalte:

- Kristalle und Kristallstrukturen, reziprokes Gitter
- Kristallbindung, Gitterschwingungen, thermische Eigenschaften, Quantisierung, Zustandsdichte
- Fermigas, Energiebänder, Halbleiter, Metalle, Fermiflächen
- Anregungen in Festkörpern
- experimentelle Methoden: Röntgenbeugung, Rastersonden- und Elektronenmikroskopie, Leitfähigkeit, Magnetowiderstand, Halleffekt, Quantenhalleffekt

Grundlegende Literatur:

- Ashcroft and Mermin, "Solid State Physics"
- C. Kittel, "Einführung in die Festkörperphysik"
- K. Kopitzki, "Einführung in die Festkörperphysik"
- H. Ibach, H. Lüth, "Festkörperphysik"

Empfohlene Vorkenntnisse:

- Module "Mechanik und Relativität" und "Elektrizität"
- Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

 Das Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen" muss abgeschlossen sein.

Modulname, Nr.	Atom- und Molekülphysik für das Lehramt an Berufsschulen	1851
Semesterlage	Wintersemester, jährlich	
Modulverantwortliche/r	Institut für Quantenoptik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Quantenoptik	
Lehrveranstaltungen (SWS)	Vorlesung "Atom- und Molekülphysik" (3 SWS) Übung "Atom- und Molekülphysik" (1 SWS)	
Präsenzstudium (h)	120	
Selbststudium (h)	30	
Leistungspunkte (ECTS)	5	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übung Prüfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung	Note der Prüfungsleistung	

Die Studierenden verstehen die grundlegenden Konzepte der Atom- und Molekülphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen experimentelle Methoden des Gebietes.

Inhalte:

- Zusammenfassung H-Atom
- Atome in statischen elektrischen und magnetischen Feldern
- Fein-/Hyperfeinstrukturen atomarer Zustände
- Wechselwirkung mit dem EM Strahlungsfeld
- Mehrelektronensysteme
- Atomspektren/Spektroskopie
- Vibration und Rotation von Molekülen
- Elektronische Struktur von Molekülen
- Dissoziation und Ionisation von Molekülen
- Ausgewählte Experimente der modernen Atom- und Molekülphysik

Grundlegende Literatur:

- T. Mayer-Kuckuck, "Atomphysik" Teubner, 1994
- B. Bransden, C. Joachain, "Physics of Atoms and Molecules" Longman 1983
- H. Haken, H. Wolf, "Atom- und Quantenphysik sowie Molekülphysik und Quantenchemie"
- R. Loudon, "The Quantum Theory of Light" OUP, 1973
- W. Demtröder, "Molekülphysik" Oldenbourg, 2003 ISBN: 3486249746

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"
- Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

 Das Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen" muss abgeschlossen sein.

Modulname, Nr.	Kohärente Optik für das Lehramt an Berufsschulen	1852
Semesterlage	Sommersemester, jährlich	
Modulverantwortliche/r	Institut für Quantenoptik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Quantenoptik und Gravitationsphysik	
Lehrveranstaltungen (SWS)	Vorlesung "Kohärente Optik" (3 SWS)Übung zu "Kohärente Optik" (1 SWS)	
Präsenzstudium (h)	120	
Selbststudium (h)	30	
Leistungspunkte (ECTS)	5	
Leistungsnachweis	Studienleistung: Übung	
zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung	Note der Prüfungsleistung	

Die Studierenden verstehen die grundlegenden Konzepte der Kohärenten Optik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen experimentelle Methoden des Gebietes.

Inhalte:

- Maxwellgleichungen und EM Wellen
- Wellenoptik, Matrixoptik (ABCD, Jones, Müller, Streu, Transfer...)
- Beugungstheorie, Fourieroptik, Resonatoren, Moden
- Licht-Materie-Wechselwirkung (klassisch / halbklassisch, Bloch-Modell)
- Ratengleichungen, Laserdynamik
- Lasertypen, Laserkomponenten, Laseranwendungen
- Modengekoppelte Laser
- Einmodenlaser, Laserrauschen/-stabilisierung
- Laserinterferometrie, Modulationsfelder und Homodyndetektion

Grundlegende Literatur:

- Meschede, "Optik, Licht und Laser", Teubner Verlag
- Menzel, "Photonik"
- Born/Wolf, "Principles of Optics"
- Kneubühl/Sigrist, "Laser", Teubner
- Reider, "Photonik". Springer
- Yariv, Hecht, Siegmann
- Originalliteratur

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"
- Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen"
- Modul "Atom- und Molekülphysik"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Das Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen" muss abgeschlossen sein.

Modulname, Nr.	Strahlenschutz für das Lehramt an Berufsschulen	1853
Semesterlage	Wintersemester und Sommersemester, jährlich	
Modulverantwortliche/r	Institut für Strahlenschutz und Radioökologie	
Dozentinnen/Dozenten	Dozentinnen/Dozenten des Strahlenschutzes und der Radioökologie	
Lehrveranstaltungen (SWS)	Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie" (2 SWS)	
Präsenzstudium (h)	60	
Selbststudium (h)	90	
Leistungspunkte (ECTS)	5	
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: Klausur oder mündliche Prüfung	
Notenzusammensetzung	Note der Prüfungsleistung	

Vertieftes Verständnis der kernphysikalischen und kernchemischen Grundlagen des Strahlenschutzes. Kenntnisse ausgewählter experimenteller Methoden zur Analyse strahlenschutzrelevanter Systeme. Kompetenter Umgang mit fortgeschrittenen Experimentellen Methoden. Kritische Beurteilung und Diskussion des experimentellen Aufbaus und der erzielten Messergebnisse.

Inhalte:

- Eigenschaften der Atomkerne, Kernmodelle
- Phänomenologie des radioaktiven Zerfalls
- Alpha-, Beta- und Gamma- Zerfall
- Kernreaktionen, spontane und induzierte Spaltung
- Neutronenphysik, Grundlagen der Reaktorphysik
- Erweiterung des periodischen Systems der Elemente und Erzeugung überschwerer Kerne
- Dosimetrie von Strahlenexpositionen
- Wechselwirkung von Strahlung mit Materie und Strahlenmessverfahren

Grundlegende Literatur:

- DVD mit Unterlagen aller Lehrveranstaltungen, auch verfügbar unter www.zsr.uni-hannover.de
- H.-G. Vogt, H. Schultz: Grundzüge des praktischen Strahlenschutzes, 3. Aufl., Hanser Verlag München 2004,
- G. Choppin, J. Rydberg, J.O. Liljenzin, Radiochemistry and Nuclear Chemistry, Butterworth Heinemann, Oxford, 1995
- P. Marmier, E. Sheldon, Physics of Nuclei and Particles, 2 Vol., Academic Press, New York, 1970
- T. Mayer-Kuckuk, Kernphysik (6, Aufl.) Teubner, Stuttgart, 1994
- G.F. Knoll, Radiation detection and measurement, J. Wiley & Sons, New York, 2000
- Karlsruher Nuklidkarte
- Strahlenschutzverordnung (StrlSchV)

Empfohlene Vorkenntnisse:

- Modul "Mechanik und Relativität"
- Modul "Elektrizität"
- Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Das Modul "Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen" muss abgeschlossen sein.

Modulname, Nr.	Moleküle, Kerne, Teilchen, Festkörper für das Lehramt an Berufsschulen
Semesterlage	Sommersemester
Modulverantwortliche/r	Institute der Experimentalphysik
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Institute der Experimentalphysik
Lehrveranstaltungen (SWS)	Vorlesung Moleküle, Kerne, Teilchen, Festkörper
Präsenzstudium (h)	60
Selbststudium (h)	120
Leistungspunkte (ECTS)	6
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: Mündliche Prüfung
Notenzusammensetzung	Note der Prüfungsleistung

Die Studierenden kennen die fundamentalen experimentellen Befunde und Gesetzmäßigkeiten der Struktur der Materie von Elementarteilchen bis zur Festkörperphysik. Sie verstehen die Bezüge zu den grundlegenden Gesetzmäßigkeiten der Mechanik, Elektrodynamik und Quantenmechanik. Die Studierenden sind in der Lage diese Gesetzmäßigkeiten eigenständig auf physikalische Problemstellungen anzuwenden.

Inhalte:

Moleküle, Kerne, Teilchen, Festkörper

- Moleküle: Chemische Bindung, Molekülspektroskopie
- Aufbau der Materie
- Physik der Kerne, Elementarteilchen
- Kernstabilität, Radioaktiver Zerfall
- Kernphysikalische Messmethoden
- Grundlagen der Statistischen Physik, Hauptsätze der Thermodynamik
- Kristalle, Halbleiter, Leitungsexperimente

Grundlegende Literatur:

- Demtröder, Experimentalphysik 3 und 4, Springer Verlag
- Berkeley Physikkurs
- Bergmann/Schäfer
- Haken, Wolf, Atom- und Quantenphysik sowie Molekülphysik und Quantenchemie, Springer Verlag

Empfohlene Vorkenntnisse:

Module: "Mechanik und Relativität", "Elektrizität", und "Optik, Atomphysik, Quantenphänomene"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Masterstudiengang Lehramt an Berufsschulen

Modulname, Nr.	Lehren und Lernen im Physikunterricht I+II	
Semesterlage	Sommersemester und Wintersemester, jährlich	
Modulverantwortliche/r	Institut für Didaktik der Mathematik und Physik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Physikdidaktik	
Lehrveranstaltungen (SWS)	 Vorlesung "Einführung in die Fachdidaktik Physik" (2 SWS) Übung zu "Einführung in die Fachdidaktik Physik" (2 SWS) Seminar "Lernen von Physik" (2 SWS) Seminar "Lehren von Physik" (2 SWS) 	
Präsenzstudium (h)	120	
Selbststudium (h)	180	
Leistungspunkte (ECTS)	10	
Leistungsnachweis zum Erwerb der LP	Studienleistung: a) regelmäßige und aktive Teilnahme an den Übungen (Bearbeitung von Übungsmaterialien und Diskussion von Arbeits- und Forschungsergebnissen) b) Anfertigung eines individuellen Portfolios zu ausgewählten Lerninhalten des Moduls b) regelmäßige und aktive Teilnahme an beiden Seminaren (Bearbeitung von Lernmaterialien und Diskussion von Arbeits- und Forschungsergebnissen) und jeweils eine Seminarleistung b) Fortführung des individuellen Portfolios aus dem Modul Lehren und Lernen im Physikunterricht I zu ausgewählten Lerninhalten des Moduls Prüfungsleistung: mündliche Prüfung oder Klausur	
Notenzusammensetzung	Note der mündliche Prüfung oder Klausur	

Kompetenzziele: Die Studierenden erwerben:

- die Fähigkeit zur Reflexion eigener Lernprozesse in der Physik,
- Kenntnisse über Ziele des Physikunterrichts und den Beitrag des Unterrichtsfachs Physik zur Bildung,
- die Fähigkeit, Inhalte der Physik mit Blick auf die Voraussetzung der Lernenden (Schülervorstellungen, Vorwissen etc.) zu elementarisieren,
- Kennnisse über Methoden und Medien im Physikunterricht.
- Kenntnisse über Ergebnisse physikdidaktischer Lehr- und Lernforschung und
- Erfahrungen in der systematischen Beobachtung und Analyse von Physikunterricht und erste eigene praktische Lehrerfahrungen.

Inhalte Vorlesung und Übung:

- Physikdidaktik als eigenständige Disziplin und Bezugsdisziplinen,
- Ziele im Physikunterricht
- Physikunterricht im historischen Wandel
- Schülervorstellungen, -interessen, -motivation und -selbstkonzept
- Methoden und Medien im Physikunterricht an ausgewählten Beispielen
- Elementarisierung und didaktische Rekonstruktion
- Analyse von verschiedenen Unterrichtskonzepten an exemplarischen Themenbereichen

- (kognitive und nicht-kognitive) Lernerfolgsmessung und Evaluation von Unterricht
- TIMSS, PISA, Bildungsstandards, Kompetenzen und Kompetenzmodelle
- Planung von Physikunterricht

Inhalte Seminare:

- Kennzeichen guten Physikunterrichts
- kompetenzorientierter Physikunterricht
- Schülervorstellungen an ausgewählten Themen der Sekundarstufe I und II
- Analogien, Modelle und Experimente im Physikunterricht
- Lernerfolgsmessung Entwicklung von Messinstrumenten, Auswertung von Tests, formative und summative assessment
- Mediennutzung praktische Anwendung
- Mathematik im Physikunterricht
- Physikunterricht und gender
- Möglichkeiten des fachübergreifenden Unterricht aus der Sicht des Schulfaches Physik
- Ergebnisse aktueller Forschungs- und Entwicklungsprojekte zur Qualitätsverbesserung im Physikunterricht und deren Anwendung
- Lernen in außerschulischen Lernorten, mit Texten, mit Beispielaufgaben, ... Gestaltung und Analyse kurzer Unterrichtssequenzen, Lehrerprofessionalisierung

Grundlegende Literatur:

- Kircher et al. (2010) Physikdidaktik. Berlin: Springer Verlag
- Mikelskis (2006) Physikdidaktik, Berlin: Cornelsen-Skript
- **Hopf** et al. (2011) Physikdidaktik kompakt, Aulis-Verlag.

und spezielle Basis-Literatur zu den einzelnen Teilthemen der Veranstaltungen. Letztere wird über einen (elektronischen) Hand-Apparat allen Teilnehmern zur Verfügung gestellt.

Empfohlene Vorkenntnisse:

Eingangsvoraussetzungen und Teilnehmerzahlbegrenzung:

- Voraussetzung für den Besuch der Seminare ist die Studienleistung zu "Einführung in die Fachdidaktik Physik"
- Voraussetzung für die Prüfung sind die Studienleistungen zu "Lehren und Lernen von Physik"

- Fächerübergreifender Bachelorstudiengang
- Bachelorstudiengang Technical Education
- Zertifikatsstudiengang Drittes Fach f
 ür das Lehramt an Gymnasien

Modulname, Nr.	Ersatzmodul I	1031
Semesterlage	Wintersemester oder Sommersemester	
Modulverantwortliche/r	Studiendekanin/Studiendekan	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Physik	
Lehrveranstaltungen (SWS)	Vorlesungen aus dem Kursangebot des Bachelorstudiengangs Physik	
Präsenzstudium (h)	000	
Selbststudium (h)	300	
Leistungspunkte (ECTS)	10	
Leistungsnachweis zum Erwerb der LP	Gemäß Prüfungsordnung des Bachelorstudiengangs Physik	
	0 "0 "0 "1"	
Notenzusammensetzung	Gemäß Prüfungsordnung des Bachelorstudiengangs Physik	

Studierende haben vertiefte Kenntnisse in ausgewählten Bereichen der Physik und können Zusammenhänge zwischen diesen Bereichen erkennen und Diskutieren.

Inhalte:

Die Inhalte richten sich nach der jeweiligen Lehrveranstaltung. Die Lehrveranstaltungen sollen so gewählt werden, dass bestehende Lücken im Vergleich zum Bachelorstudium Physik geschlossen werden und so der Übertritt in das Masterstudium Physik erleichtert wird.

Grundlegende Literatur:

Gemäß Modulbeschreibung des Bachelorstudiengangs Physik

Empfohlene Vorkenntnisse:

Gemäß Modulbeschreibung des Bachelorstudiengangs Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Fächerübergreifender Bachelorstudiengang (Erstfach)

Modulname, Nr.	Ersatzmodul II	1032
Semesterlage	Wintersemester oder Sommersemester	
Modulverantwortliche/r	Studiendekanin/Studiendekan	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Physik	
Lehrveranstaltungen (SWS)	Vorlesungen aus dem Kursangebot des Bachelorstudiengangs Physik	
Präsenzstudium (h)	200	
Selbststudium (h)	300	
Leistungspunkte (ECTS)	10	
Leistungsnachweis	Gemäß Prüfungsordnung des Bachelorstudiengangs Physik	
zum Erwerb der LP		
Notenzusammensetzung	Gemäß Prüfungsordnung des Bachelorstudiengangs Physik	

Studierende haben vertiefte Kenntnisse in ausgewählten Bereichen der Physik und können Zusammenhänge zwischen diesen Bereichen erkennen und Diskutieren.

Inhalte:

Die Inhalte richten sich nach der jeweiligen Lehrveranstaltung. Die Lehrveranstaltungen sollen so gewählt werden, dass bestehende Lücken im Vergleich zum Bachelorstudium Physik geschlossen werden und so der Übertritt in das Masterstudium Physik erleichtert wird.

Grundlegende Literatur:

Gemäß Modulbeschreibung des Bachelorstudiengangs Physik

Empfohlene Vorkenntnisse:

Gemäß Modulbeschreibung des Bachelorstudiengangs Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Fächerübergreifender Bachelorstudiengang (Erstfach)

Modulname, Nr.	Ersatzmodul III	1033
Semesterlage	Wintersemester oder Sommersemester	
Modulverantwortliche/r	Studiendekanin/Studiendekan	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Physik	
Lehrveranstaltungen (SWS)	Vorlesungen aus dem Kursangebot des Bachelorstudiengangs Physik	
Präsenzstudium (h)	100	
Selbststudium (h)	180	
Leistungspunkte (ECTS)	6	
Leistungsnachweis zum Erwerb der LP	Gemäß Prüfungsordnung des Bachelorstudiengangs Physik	
	0 "0 "0 "1"	
Notenzusammensetzung	Gemäß Prüfungsordnung des Bachelorstudiengangs Physik	

Studierende haben vertiefte Kenntnisse in ausgewählten Bereichen der Physik und können Zusammenhänge zwischen diesen Bereichen erkennen und Diskutieren.

Inhalte:

Die Inhalte richten sich nach der jeweiligen Lehrveranstaltung. Die Lehrveranstaltungen sollen so gewählt werden, dass bestehende Lücken im Vergleich zum Bachelorstudium Physik geschlossen werden und so der Übertritt in das Masterstudium Physik erleichtert wird.

Grundlegende Literatur:

Gemäß Modulbeschreibung des Bachelorstudiengangs Physik

Empfohlene Vorkenntnisse:

Gemäß Modulbeschreibung des Bachelorstudiengangs Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:

• Fächerübergreifender Bachelorstudiengang (Erstfach)

Modulname, Nr.	Bachelorarbeit (FüB)	1911
Semesterlage	Beginn ganzjährig möglich	
Modulverantwortliche/r	Studiendekanin/Studiendekan	
Dozentinnen/Dozenten	Dozenten/Dozentinnen der jeweiligen Fachrichtung	
Lehrveranstaltungen (SWS)	Projekt "Bachelorarbeit" (7 LP) Seminar "Arbeitsgruppenseminar" (2 SWS, 3LP)	
Präsenzstudium (h)	200	
Selbststudium (h)	300	
Leistungspunkte (ECTS)	10	
Leistungsnachweis	Studienleistung: Seminarleistung	
zum Erwerb der LP	Prüfungsleistung: Bachelorarbeit	
Notenzusammensetzung	Note der Bachelorarbeit (Durchschnittsnote der zwei Gutachte	n)

- Fähigkeit zum Durchführen eines wissenschaftlichen Projekts unter Anleitung;
- Fähigkeit im Umgang mit z.T. englischsprachiger wissenschaftlichen Literatur;
- Fähigkeit zum wissenschaftlichen Schreiben;
- Kompetenz zur Bearbeitung eines komplexen Problems mit wissenschaftlichen Methoden;
- Fähigkeit zur Präsentation eines Themas unter Einsatz geeigneter Medien.

Inhalte:

- Eingegrenztes wissenschaftliches Thema zu Physik/Physikdidaktik nach Absprache mit der Betreuerin/dem Betreuer,
- Benutzung von Fachliteratur/Datenbanken;
- Präsentationstechniken und Medieneinsatz;
- Planung der Bachelorarbeit
- Wissenschaftliches Schreiben
- Diskussionsführung

Grundlegende Literatur:

- Aktuelle Literatur zum Thema der Bachelorarbeit
- Stickel-Wolf, Wolf, "Wissenschaftliches Arbeiten und Lerntechniken", 2004, ISBN: 3-409-31826-7
- Walter Krämer, "Wie schreibe ich eine Seminar- oder Examensarbeit?", 1999, ISBN: 3-593-36268-6, Gruppe: Studienratgeber, Reihe: campusconcret, Band: 47
- Abacus communications, "The language of presentations" CDROM Lehr- und Trainingsmaterial
- Alley, "The Craft of Scientific Presentation"
- Day, "How to write & publish a scientific paper". Cambridge University Press.

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- mindestens 120 LP
- bedingt durch die Fächerkombination können vereinzelt weitere Voraussetzungen gelten, die nichts mit dem Erstfach zu tun haben

Verwendbarkeit:

Fächerübergreifender Bachelorstudiengang (Erstfach)

Modulname, Nr.	Bachelorarbeit (Bachelor Technical Education) 1921
Semesterlage	Beginn ganzjährig möglich
Modulverantwortliche/r	Studiendekanin/Studiendekan
Dozentinnen/Dozenten	Dozenten/Dozentinnen der jeweiligen Fachrichtung
Lehrveranstaltungen (SWS)	Projekt "Bachelorarbeit" (12 LP) Seminar "Arbeitsgruppenseminar" (2 SWS, 3LP)
Präsenzstudium (h)	450
Selbststudium (h)	450
Leistungspunkte (ECTS)	15
Leistungsnachweis	Studienleistung: Seminarleistung
zum Erwerb der LP	Prüfungsleistung: Bachelorarbeit
Notenzusammensetzung	Note der Bachelorarbeit (Durchschnittsnote der zwei Gutachten)

- Fähigkeit zum Durchführen eines wissenschaftlichen Projekts unter Anleitung;
- Fähigkeit im Umgang mit z.T. englischsprachiger wissenschaftlichen Literatur;
- Fähigkeit zum wissenschaftlichen Schreiben;
- Kompetenz zur Bearbeitung eines komplexen Problems mit wissenschaftlichen Methoden;
- Fähigkeit zur Präsentation eines Themas unter Einsatz geeigneter Medien.

Inhalte:

- Eingegrenztes wissenschaftliches Thema zu Physik/Physikdidaktik nach Absprache mit der Betreuerin/dem Betreuer,
- Benutzung von Fachliteratur/Datenbanken;
- Präsentationstechniken und Medieneinsatz;
- Planung der Bachelorarbeit
- Wissenschaftliches Schreiben
- Diskussionsführung

Grundlegende Literatur:

- Aktuelle Literatur zum Thema der Bachelorarbeit
- Stickel-Wolf, Wolf, "Wissenschaftliches Arbeiten und Lerntechniken", 2004, ISBN: 3-409-31826-7
- Walter Krämer, "Wie schreibe ich eine Seminar- oder Examensarbeit?", 1999, ISBN: 3-593-36268-6, Gruppe: Studienratgeber, Reihe: campusconcret, Band: 47
- Abacus communications, "The language of presentations" CDROM Lehr- und Trainingsmaterial
- Alley, "The Craft of Scientific Presentation"
- Day, "How to write & publish a scientific paper". Cambridge University Press

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

• mindestens 120 LP

Verwendbarkeit:

Bachelorstudiengang Technical Education

Modulname, Nr.	Fachwissenschaftliche Vertiefung	1016
Semesterlage	Winter- oder Sommersemester	
Modulverantwortliche /r	Studiendekanin/Studiendekan	
Dozentinnen/Dozente n	Dozentinnen/Dozenten der Physik	
Lehrveranstaltungen (SWS)	Vorlesungen aus dem Kursangebot des Bachelorstudiengangs Physik	
Präsenzstudium (h)	150	
Selbststudium (h)	150	
Leistungspunkte (ECTS)	5	
Leistungsnachweis zum Erwerb der LP	zum Erwerb der LP	
Notenzusammensetz ung	Prüfungsleistung: Klausur oder mündliche Prüfung (je nach Verans Note der Prüfung	statiung <i>)</i>

Vertiefte Kenntnisse eines weiteren Bereichs der Physik. Fähigkeit zum Erkennen und Diskutieren von Zusammenhängen zu bereits bekannten Gebieten. Fähigkeit zur Einordnung neuer Fakten in einen Gesamtkontext der zu Grunde liegenden physikalischen Theorien.

Inhalte:

Die Inhalte richten sich nach der jeweiligen Lehrveranstaltung.

Mögliche Inhalte finden sich in den Modulbeschreibungen Einführung in die Festkörperphysik, Atom- und Molekülphysik, Kohärente Optik, Strahlenschutz oder auch den Modulbeschreibungen zu fortgeschrittene Festkörperphysik, Gravitationsphysik, Quantenoptik oder Fortgeschrittene Quantentheorie (alle Bachelorund Masterstudiengang Physik). Darüber hinaus können dem Modul im Vorlesungsverzeichnis weitere geeignete Lehrveranstaltungen zugeordnet werden.

Grundlegende Literatur:

Gemäß Modulbeschreibungen des Bachelorstudiengangs Physik

Empfohlene Vorkenntnisse:

Gemäß Modulbeschreibungen des Bachelorstudiengangs Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Masterstudiengang Lehramt Gymnasium (Erstfach)
- Zertifikatsstudiengang Drittes Fach für das Lehramt an Gymnasien

Modulname, Nr.	Fortgeschrittene Fachdidaktik Physik	????
Semesterlage	Wintersemester (Praktikum), Winter- und Sommersemester(Seminare)	
Modulverantwortliche /r	Institut für Didaktik der Mathematik und Physik	
Dozentinnen/Dozente n	Dozentinnen/Dozenten der Physikdidaktik	
Lehrveranstaltungen (SWS)	 Praktikum "Experimente und Experimentieren im Physikunterricht –(PEX)" (5 SWS) Fachdidaktische Seminare im Umfang von mindestens 4 LP, beispielsweise Seminar "Unterrichtskonzepte der modernen Physik" 2 LP, Seminar "Neue Medien im Physikunterricht" 2 LP 	
Präsenzstudium (h)	135	
Selbststudium (h)	185	
Leistungspunkte (ECTS)	8	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Praktikum: a) regelmäßige und aktive Teilnahme (Aufbau, Durchführung und Auswertung von Experimenten, Präsentation von Experimenten, Diskussion von Arbeitsergebnissen) b) Sicherheitstest: Nachweis mindestens ausreichender Kenntnisse der Sicherheitsrichtlinien im Physikunterricht und deren praktische Anwendung. Seminare: a) regelmäßige und aktive Teilnahme an beiden Seminaren (Bearbeitung von Lernmaterialien und Diskussion von Arbeits- und Forschungsergebnissen) und jeweils eine Seminarleistung Prüfungsleistung: Mündliche Prüfung oder Klausur über die Inhalte der fachdidaktischen Seminare	
Notenzusammensetz ung	Note der mündlichen Prüfung oder Klausur	

Praktikum: Die Studierenden erwerben

- den kompetenten Umgang mit schultypischem Lehrgeräten und Experimentiermaterial
- vertiefte Kenntnisse experimenteller Arbeitsmethoden der Physik einschließlich der systematischen Fehleranalyse
- die Fähigkeit Experimente unter didaktischer Perspektive auszuwählen, zu planen, durchzuführen und auszuwerten
- Kenntnisse über Planung und Durchführung von Experimenten im Schulunterricht unter Berücksichtigung der Sicherheitsrichtlinien
- Kompetenz in der Präsentation von Experimenten

Fachdidaktische Seminare:

 Die Studierenden erweitern Ihre – über das Bachelorniveau hinausgehend - fachdidaktischen Kompetenzen. Hier sind insbesondere die Fähigkeiten in der Auswahl, Elementarisierung und Anordnung von Inhalten sowie Fähigkeiten in der angemessenen Auswahl und Verwendung von Methoden und Medien im Physikunterricht zu nennen. Sie erweitern ihre Fähigkeiten zur Rezeption von fachdidaktischen Entwicklungs- und Forschungsarbeiten sowie deren Beurteilung und Bewertung anhand exemplarischer Beispiele aus der Unterrichtspraxis.

Inhalte:

Praktikum:

- Didaktische Funktionen und Klassifikation von Schulexperimenten an konkreten Beispielen;
- Schülerexperimente: Planung, Aufbau, Erprobung, didaktische Analyse;
- Aufbau und Optimierung von Experimenten mit einfachen Mitteln;
- Demonstrationsexperimente im Physikunterricht der Sekundarstufe I und II aufbauen und erproben; Elementarisierungen des diesen Experimenten zu Grunde liegenden Sachverhalts vornehmen;
- Experimentieren unter Einbezug neuer Medien (Datenerfassung, -aufbereitung, -darstellung; Simulation);
- Kenntnis und Anwendung von Sensorsystemen für den Physikunterricht;
- Anregungen zur kritischen Reflexion der eigenen und von Lernenden erwarteten naturwissenschaftlichen Denk-und Arbeitsweisen:
- · Gerätekunde typischer Schulgeräte;

Sicherheitsrichtlinien im Physikunterricht.

Fachdidaktische Seminare: Die Inhalte variieren entsprechend des Themas der speziellen fachdidaktischen Veranstaltungen. Zwei Beispiele:

Im Seminar "Unterrichtskonzepte der modernen Physik" werden verschiedene fachdidaktische Ansätze vorgestellt und reflektiert, wie Inhalte der modernen Physik (Quantenphysik, Relativitätstheorie, nichtlineare Physik, …) im Physikunterricht der Sekundarstufe II und I vermittelt werden können. Bezüglich der Quantenphysik sind hier unter anderem das Berliner-, das Bremer und das Münchner-Konzept zu nennen.

Inhalte im Seminar "Neue Medien im Physikunterricht" sind der reflektierte Umgang mit (alten und neuen) Medien und die praktische Arbeit mit Neuen Medien. Spezielle Inhalte dieses Seminars sind u.a. der Einsatz der digitalen Videoanalyse, Experimente mit verschiedenen Sensoren z.B. des Cassy-Systems und der Computer-Soundkarte sowie die Verwendung von Animationen, Simulationen und Modellbildungssystemen.

Weitere Inhalte beziehen sich auf Themen wie Mechanik in der Sek. I und Sek. II, Konzepte der Elektrizitätslehre, Methodische Fingerübungen für den PU, Forschendes Lernen etc.

Grundlegende Literatur:

- Praktikum: Literatur wird im Praktikum angegeben bzw. verteilt.
- Spezielle Literaturhinweise zu den Seminaren werden in den jeweiligen Veranstaltungen genannt.

Empfohlene Vorkenntnisse:

Module: Lehren und Lernen im Physikunterricht I und II (Bachelorstudiengang) bzw. äquivalente fachdidaktische Kenntnisse.

Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Teilnehmerzahlbegrenzung im Praktikum auf 8 Personen.

- Masterstudiengang Lehramt Gymnasium
- Masterstudiengang Lehramt berufsbildende Schulen
- Zertifikatsstudiengang Drittes Fach für das Lehramt an Gymnasien

Modulname, Nr.	Fachpraktikum Physik (Lehramt Gymnasium)	
Semesterlage	Wintersemester, jährlich	
Modulverantwortliche/r	Institut für Didaktik der Mathematik und Physik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Physikdidaktik	
Lehrveranstaltungen (SWS)	Seminar "Vorbereitungsseminar für das Fachpraktikum" (2 SWS),Schulpraktikum (5 Wochen)	
Präsenzstudium (h)	210	
Selbststudium (h)	210	
Leistungspunkte (ECTS)	7	
Leistungsnachweis zum Erwerb der LP	 Studienleistung: a) regelmäßige und aktive Teilnahme am Seminar (Bearbeitung von Lernmaterialien und Diskussion von Arbeits- und Forschungsergebnissen) und eine Seminarleistung b) regelmäßiger Unterricht während des Blockpraktikums und Hospitation von Physikunterricht Prüfungsleistung: Praktikumsbericht 	
Notenzusammensetzung	Note des Praktikumsbericht	

Kompetenzziele: Die Studierenden erwerben

- vertiefte Kenntnisse und Fähigkeiten in der Planung und Entwicklung adressatengerechter Lernstrukturen, indem sie für begrenzte Themengebiete ausgehend von der Sach- und Schülerperspektive grundlegende didaktische Entscheidungen treffen und diese - unter der Berücksichtigung von Alternativen - begründen können,
- die F\u00e4higkeiten verschiedenen Unterrichtsmethoden und Medien aus physikdidaktischer Perspektive zu betrachten, ihre Passung mit Unterrichtsinhalten zu beurteilen und zielgerichtet eine begr\u00fcndete Auswahl zu treffen,
- praktische Lehrerfahrungen im Blockpraktikum basierend auf den eigenen Unterrichtsplanungen im Vorbereitungsseminar,
- Kenntnisse in der systematischen Beobachtung von Physikunterricht,
- Fähigkeiten in der Evaluation und Reflexion des eigenen Unterrichts.

Inhalte:

- Rahmenrichtlinien/Kerncurricula, Bildungsziele und –standards für den Physikunterricht
- Sicherheits-Richtlinien für den Physikunterricht
- Grob- und Feinplanung von Unterricht unter Verwendung des Modells der didaktischen Rekonstruktion
- Erstellung von Unterrichtsentwürfen
- Schülerzentrierte Unterrichtsansätze
- Bedeutung der Fachsprache im Physikunterricht
- Experimente im Physikunterricht Einsatzmöglichkeiten und praktische Durchführung
- Einsatz von Medien im Physikunterricht
- Evaluation von Physikunterricht

Grundlegende Literatur:

- Kerncurricula des Landes Niedersachsen
- Kircher et al. (2010). Physikdidaktik Eine Einführung. Berlin: Springer-Verlag
- Mikelskis-Seifert & Rabe (2007) Physik-Methodik Handbuch für die Sekundarstufe I und II. Berlin: Cornelsen-Skriptor
- Muckenfuß (2006) Lernen im sinnstiftenden Kontext Entwurf einer zeitgemäßen Didaktik des Physikunterrichts. Berlin: Cornelsen
- Kretschmer & Stary (1998). Schulpraktikum: Eine Orientierungshilfe zum Lernen und Lehren . Berlin: Cornelsen-Skriptor

Weitere Literatur wird im Seminar bekannt gegeben und über einen (elektronischen) Hand-Apparat allen Teilnehmern unmittelbar zur Verfügung gestellt

Empfohlene Vorkenntnisse:

Module Lehren und Lernen im Physikunterricht I und II (Bachelorstudiengang) bzw. äquivalente fachdidaktische Kenntnisse und erstes (allgemeines) Schulpraktikum.

Eingangsvoraussetzungen und Teilnehmerzahlbegrenzung: Teilnehmerbegrenzung: 8 Personen

Verwendbarkeit: Masterstudiengang Lehramt Gymnasium

Modulname, Nr.	Fachpraktikum Physik (LbS)	1728
Semesterlage	Wintersemester, jährlich	
Modulverantwortliche/r	Institut für Didaktik der Mathematik und Physik	
Dozentinnen/Dozenten	Dozentinnen/Dozenten der Physikdidaktik	
Lehrveranstaltungen (SWS)	 Seminar "Vorbereitungsseminar für das Fachpraktikum" (2 SWS), Schulpraktikum (2 Wochen) 	
Präsenzstudium (h)	120	
Selbststudium (h)	120	
Leistungspunkte (ECTS)	4	
Leistungsnachweis zum Erwerb der LP	 Studienleistung: a) regelmäßige und aktive Teilnahme am Seminar (Bearbeitung von Lernmaterialien und Diskussion von Arbeits- und Forschungsergebnissen) und eine Seminarleistung. b) regelmäßiger Unterricht während des Blockpraktikums und Hospitation von Physikunterricht. Prüfungsleistung: Praktikumsbericht 	
Notenzusammensetzung	Note des Praktikumsberichts	

Kompetenzziele: Die Studierenden erwerben

- vertiefte Kenntnisse und Fähigkeiten in der Planung und Entwicklung adressatengerechter Lernstrukturen, indem sie für begrenzte Themengebiete ausgehend von der Sach- und Schülerperspektive grundlegende didaktische Entscheidungen treffen und diese - unter der Berücksichtigung von Alternativen - begründen können,
- die Fähigkeiten verschiedenen Unterrichtsmethoden und Medien aus physikdidaktischer Perspektive zu betrachten, ihre Passung mit Unterrichtsinhalten zu beurteilen und zielgerichtet eine begründete Auswahl zu treffen,
- praktische Lehrerfahrungen im Blockpraktikum basierend auf den eigenen Unterrichtsplanungen im Vorbereitungsseminar,
- Kenntnisse in der systematischen Beobachtung von Physikunterricht,
- Fähigkeiten in der Evaluation und Reflexion des eigenen Unterrichts.

Inhalte:

- Rahmenrichtlinien/Kerncurricula, Bildungsziele und –standards für den Physikunterricht
- Sicherheits-Richtlinien für den Physikunterricht
- Grob- und Feinplanung von Unterricht unter Verwendung des Modells der didaktischen Rekonstruktion
- Erstellung von Unterrichtsentwürfen
- Schülerzentrierte Unterrichtsansätze
- Bedeutung der Fachsprache im Physikunterricht
- Experimente im Physikunterricht Einsatzmöglichkeiten und praktische Durchführung
- Einsatz von Medien im Physikunterricht
- Evaluation von Physikunterricht

Grundlegende Literatur:

- Kerncurricula des Landes Niedersachsen
- Kircher et al. (2010). Physikdidaktik Eine Einführung. Berlin: Springer-Verlag
- Mikelskis-Seifert & Rabe (2007) Physik-Methodik Handbuch für die Sekundarstufe I und II. Berlin: Cornelsen-Skriptor
- Muckenfuß (2006) Lernen im sinnstiftenden Kontext Entwurf einer zeitgemäßen Didaktik des Physikunterrichts. Berlin: Cornelsen
- Kretschmer & Stary (1998). Schulpraktikum: Eine Orientierungshilfe zum Lernen und Lehren. Berlin: Cornelsen-Skriptor

Weitere Literatur wird im Seminar bekannt gegeben und über einen (elektronischen) Hand-Apparat allen Teilnehmern unmittelbar zur Verfügung gestellt.

Empfohlene Vorkenntnisse:

Modul(e) Lehren und Lernen im Physikunterricht (Bachelorstudiengang) bzw. Nachweis äquivalente fachdidaktische Kenntnisse und erstes (allgemeines) Schulpraktikum.

Eingangsvoraussetzungen und Teilnehmerzahlbegrenzung: Teilnehmerbegrenzung: 8 Personen

Modulname, Nr.	Masterarbeit (LGym)	1932
Semesterlage	Beginn ganzjährig möglich	
Modulverantwortliche/r	Studiendekanin/Studiendekan	
Dozentinnen/Dozenten	Dozenten/Dozentinnen der jeweiligen Fachrichtung	
Lehrveranstaltungen (SWS)	Projekt "Masterarbeit"	
Präsenzstudium (h)	750	
Selbststudium (h)		
Leistungspunkte (ECTS)	25	
Leistungsnachweis	Prüfungsleistung: Masterarbeit; Mündliche Prüfung (nach§10(4	I) der
zum Erwerb der LP	Prüfungsordnung, unabhängig von der Masterarbeit)	
	80% Note der Masterarbeit	
Notenzusammensetzung	20% Note der mündlichen Prüfung	

Die Studierenden können in einem internationalen Forschungsumfeld ein aktuelles wissenschaftliches Problem selbstständig entsprechend eines von ihnen verfassten Projektplans bearbeiten, d.h. entsprechende Experimente bzw. Berechnungen durchführen, und zu Ergebnissen führen. Sie können die Bearbeitung der Problemstellung sowie die erzielten Ergebnisse schriftlich dokumentieren, in geeigneter Form präsentieren und diskutieren.

Inhalte:

- Selbstständige Bearbeitung einer aktuellen wissenschaftlichen Problemstellung in einem internationalen Forschungsumfeld
- Schriftliche Dokumentation und mündliche Präsentation des Forschungsprojekts und der Ergebnisse
- Wissenschaftliche Diskussion der Ergebnisse

Grundlegende Literatur:

- Aktuelle Literatur zur jeweiligen wissenschaftlichen Problemstellung
- Day, "How to write & publish a scientific paper". Cambridge University Press
- Walter Krämer, "Wie schreibe ich eine Seminar- oder Examensarbeit?", 1999, ISBN: 3-593-36268-6, Gruppe: Studienratgeber, Reihe: campusconcret, Band: 47.

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

75 Leistungspunkte

Verwendbarkeit:

Masterstudiengang Lehramt Gymnasium

Modulname, Nr.	Masterarbeit (LbS)	1942
Semesterlage	Beginn ganzjährig möglich	
Modulverantwortliche/r	Studiendekanin/Studiendekan	
Dozentinnen/Dozenten	Dozenten/Dozentinnen der jeweiligen Fachrichtung	
Lehrveranstaltungen (SWS)	Projekt "Masterarbeit"	
Präsenzstudium (h)	600	
Selbststudium (h)	600	
Leistungspunkte (ECTS)	20	
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: Masterarbeit; Mündliche Prüfung	
Zuili Erwerb der LP	950/ Note der Mestererheit	
Notenzusammensetzung	85% Note der Masterarbeit 15% Note der mündlichen Prüfung	

Die Studierenden können in einem internationalen Forschungsumfeld ein aktuelles wissenschaftliches Problem selbstständig entsprechend eines von ihnen verfassten Projektplans bearbeiten, d.h. entsprechende Experimente bzw. Berechnungen durchführen, und zu Ergebnissen führen. Sie können die Bearbeitung der Problemstellung sowie die erzielten Ergebnisse schriftlich dokumentieren, in geeigneter Form präsentieren und diskutieren.

Inhalte:

- Selbstständige Bearbeitung einer aktuellen wissenschaftlichen Problemstellung in einem internationalen Forschungsumfeld
- Schriftliche Dokumentation und mündliche Präsentation des Forschungsprojekts und der Ergebnisse
- Wissenschaftliche Diskussion der Ergebnisse

Grundlegende Literatur:

- Aktuelle Literatur zur jeweiligen wissenschaftlichen Problemstellung
- Day, "How to write & publish a scientific paper". Cambridge University Press
- Walter Krämer, "Wie schreibe ich eine Seminar- oder Examensarbeit?", 1999, ISBN: 3-593-36268-6, Gruppe: Studienratgeber, Reihe: campusconcret, Band: 47.

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

75 Leistungspunkte

Verwendbarkeit:

Masterstudiengang Lehramt berufsbildende Schulen